

D200E03

Useful Formulas **200.E.03**

WATER HORSEPOWER: = $\frac{\text{GPM} \times 8.33 \times \text{Head}}{33000}$ = $\frac{\text{GPM} \times \text{Head}}{3960}$	WHERE:GPM=Gallons per Minute8.33=Pounds of water per gallon33000=Ft. Lbs. per minute in one horsepowerHead=Difference in energy head in feet (field head).
LABORATORY BHP=Head x GPM x Sp. Gr. 3960 x Eff.FIELD BHP=Laboratory BHP + Shaft LossTOTAL BHP=Field BHP + Thrust Bearing Loss	WHERE: GPM = Gallons per Minute Head = Lab. Head (including column loss) Efficiency = Lab. Eff. of Pump Bowls (from price book curves) Shaft Loss = HP loss due to mechanical friction of lineshaft bearings Thrust = HP Loss in driver thrust bearings Bearing Loss (See (1) below under Misc.)
INPUT HORSEPOWER = Total BHP Motor Eff.	Motor Eff. from Motor mfg. (as a decimal)
FIELD EFFICIENCY = Water Horsepower Total BHP	Water HP as determined above Total BHP as determined above
OVERALL PLANT EFFICIENCY = Water Horsepower Input Horsepower	Water HP as determined above Input HP as determined above

Useful Formulas 200.E.03

	INPUT HORSEPOWER = $\frac{BHP}{Mot. Eff.} = \frac{4.826 \times K \times M \times R}{T} = \frac{1.732 \times E \times I \times PF}{746}$		
ELECTRICAL	 BHP = Brake Horsepower as determined above Mot. Eff. = Rated Motor Efficiency K = Power Company Meter Constant M = Power Company Meter Multiplier, or Ratio of Current and Potential Transformers connected with meter R = Revolutions of meter disk T = Time in Sec. for R E = Voltage per Leg applied to motor I = Amperes per Leg applied to motor PF = Power factor of motor 1.732 = Factor for 3-phase motors. This reduces to 1 for single phase motors 		
	Kilowatt input to Motor $= .746 \times 1 \text{ HP} = \frac{1.732 \times E \times 1 \times PF}{1000}$ KW-Hrs. Per 1000 Gallons of Cold Water Pumped Per Hour $= \frac{\text{HD in ft. x 0.00315}}{\text{Pump Eff. x Mot. Eff.}}$		
MISC.	 (1) Thrust Bearing Loss = .0075 HP per 100 RPM per 1000 lbs. thrust.* (2) Overall Plant Efficiency sometimes referred to as "Wire to Water" Efficiency *Thrust (in lbs.) = (thrust constant (k) laboratory head) + (setting in feet x shaft wt. per ft.) Note: Obtain thrust constant from curve sheets 		
	Discharge Head (in feet of fluid pumped) = Discharge Pressure (psi) x 2.31 Sp. Gr. of Fluid Pumped		
	Velocity Head = $\frac{V^2}{2G}$ V = Velocity of WaterG = Acceleration Due to Gravity 32.2 ft./sec2		

Goulds is a registered trademark of Goulds Pumps, Inc. and is used under license. © 2012 Xylem Inc. D200E03 January 2009