

June 17, 2021

Process & Treatment Manager, North Asia

Dr. Tao Su

Saving Energy with Ammonia Control at Wastewater Treatment Plants Thank you for joining. We will begin shortly!

Wastewater Treatment Plant Monitoring and Control

House keeping

Audio Settings

Make sure you can hear us loud and clear

Ask Questions

We'll try to answer as many as we can during the presentation

Chat

You can also use the Chat panel to ask questions or contact us if you're having technical difficulties

Yes! We are recording

A link to the recording will be available in our follow up email & in our <u>webinar library</u>.

Yes! You can download this presentation

A link to a PDF version of this presentation will be available in our follow up email.

Dr. Tao Su

BACKGROUND

PhD in Environmental Sciences University of Tokyo

- Xylem Product Manager of Online Instrumentation
- Responsible for product sales and promotion of WTW online products throughout North Asia.
- 3 years with Xylem (Analytics) and 6 years in the water treatment market.

Contents

- 1. Background: WWTP energy consumption
- 2. Aeration control system
- 3. Energy-saving Principle
- 4. Practical Examples for energy saving

Background

Global WWTP Energy Consumption

Wastewater Treatment Plants (WWTPs) play a key role in protecting natural water bodies, however they are also one of the largest energy consumers in most countries.

Rank +	Country/Region 🗢	Electricity consumption (GW·h/yr)	Year of data ≑
—	World	23,398,000	2018 est.
1	China	7,500,000	2020
2	United States	3,989,566	2019 est.
3	💼 India	1,547,000	2018 est.
4	Russia	965,156	2019 est.
5	• Japan	902,842	2019 est.
6	📀 Brazil	597,234	2019 est.
7	Canada	549,263	2019 est.
8	Korea, South	527,035	2019 est.
9	Germany	524,268	2019 est.
10	France	449,422	2019 est.

Top 10 energy consuming countries in the world

Reference:https://en.wikipedia.org/wiki/List_of_countries_by_electricity_consumption

Poll Question #1

Which part of WWTPs have the largest opportunity to save energy?

The breakdown of energy consumed at WWTPs

Measures for energy-saving at WWTPs

Aeration control system

Poll Question #2

Which control system are you or your customer currently using?

Aeration control system

- Dissolved Oxygen (DO) sensor aeration control
- Ammonia sensor-based aeration control, including in combination with DO sensors.

Energy-saving Principle

Energy-saving Principle

When ammonium is used as the parameter to evaluate oxygen demand then we are given a much more sensitive and accurate reflection of the real oxygen demand in an aeration tank.

Poll Question #3

Which treatment process are you or your customer currently using?

Practical Examples for saving energy

SBR wwtp Glueckstadt: 20.000 PE

Till 2008: Time based process control only

High energy saving potential in aeration control during nitrification process

Tests lead to change from time based control to dynamic process control over NH_4 -N & NO_3 -N measurement

Time based D.O. control

Dynamic control based on D.O., NH₄, NO₃

Past: O₂ and time based control

Fixed process times

(based on several years of experience) 1. Filling1 & Denitrification: 60 min 2. Denitrification 1 & Bio-P: 45 min 3. Nitrification1: 110 min 4. Filling2 & Denitrification: 30 min 5. Denitrification2: 75 min 6. Nitrification2: 120 min 7. Sedimentation: 130 min 8. Decanting cleaned water: 40 min 9. Pause

approx. 10 h per cycle

Nitrification times very long -> can be shorter

-> in average ~50%

Today: dynamic O₂ and NH₄-N based control

Nitrification1 is stopped when:

- 1.3 mg/L NH₄-N is reached
- or time (110 min) is exceeded (old time interval)

Nitrification2 is stopped when:

- 0.7 mg/L NH₄-N is reached
- or time (120 min) is exceeded (old time interval)

Nitrification times reduced by

- 4 h per day
- or 1.500 h per year

SBR Plant Glückstadt (NH₄-N & O₂ based control)

- Lower energy consumption
- Less wear-out of aerator
- Savings of this particular plant approx. 20.000 € / year

日新電機技報 Vol.62, No. 3 (2017.10) N. Nagashio, T. Tabata, S. Ushiro, T. Takehara

下水処理施設に於けるアンモニア態窒素濃度計の活用検討		NISSIN		
一般論文				
下水処理施設に於ける アンモニア態窒素濃度計の活用検討				
Research on Utilization of NH ₄ -N Sensors in Sewage Treatment Plants	長塩尚	之 *	田端降	旌*

神奈川県大和市北部浄化センター

Kanagawa Prefecture, Yamato city, North WWTP

Treatment process	Standard AS process		
Capacity	44,000 m3/d		
P. E	62,216		
Discharge	River		

Ammonia sensor control system

図3 調査系の反応槽処理フロー

24

Results

- 1. Based on NH4 concentration, average DO demand decreased from 2.4mg/L to 1.6 mg/L
- 2. 10~15% reduction in use of electrical power.
- 3. Effluent water quality met regulations.

WTW Ammonia Sensor

Features of AmmoLyt® Plus 700 series

- ✓ High Accuracy with K+ Dynamic compensation
- Economical by stability over long periods of time
- User friendly with electrode, simple cable exchange
- Maintenance simplified with compress air auto-cleaning.

Poll Question #4

Would you like a WTW product specialist to contact you with more information?

Questions?

CONTACT US

Dr. Tao Su tao.su@xylem.com

Xylem APAC & MEA info.apac@xyleminc.com

ISE Sensorvs Wet Chemist Analyzer for Ammonia/Ammonium

WTW

xylem

a xylem brand

www.xylem.com | Xylem Analytics Webinar Library