

# Online Wastewater Monitoring of COD/BOD with Spectral Sensors

DR. TAO SU WTW PRODUCT MANAGER



#### **WTW Webinar Series**



June 25
How to monitor BOD
with OxiTop
(Part #1)



July 7
Online Wastewater
Monitoring of COD/BOD
With Spectral Sensors



July 9
How to monitor BOD
with OxiTop
(Part #2)



July 14
Photometry basics
& Automated Chemistry
Analyzers

www.xylem-analytics.asia



#### Dr. Tao Su

- PhD in Environment Science (Tokyo Univ.)
- 5 years research with Tokyo university
- 3 years with Xylem
- Product manager for WTW instrumentation







**Poll Question #1** 

Where are you currently monitoring BOD/COD?



# Importance of COD Monitoring



**Environmental issues** 



**Polluted waterbodies** 



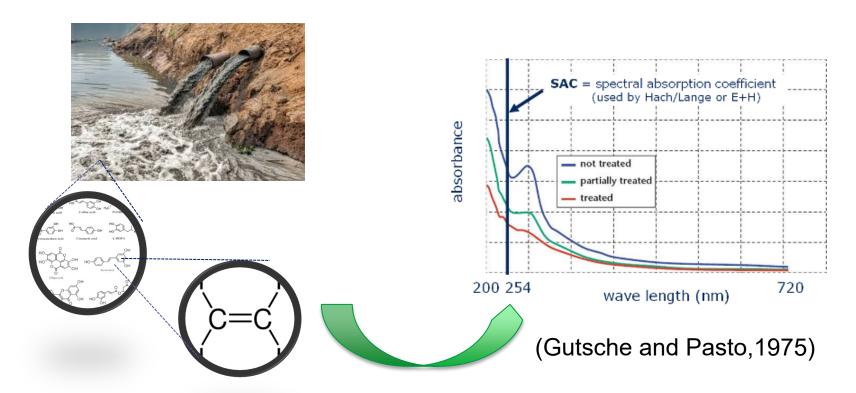


#### **COD Measurement Method**

Chemical Oxygen Demand (COD) is a measure of water and wastewater quality. The COD is the amount of oxygen consumed to chemically oxidize organic water contaminants to inorganic end products.

Standard Method

Oxidant: potassium dichromate, potassium iodate, potassium permanganate Toxic, management troublesome


WTW Cabovis UVVIS method

NO Reagent, No wait (1min), No toxic regent Mangement





#### **UV Method Principle**

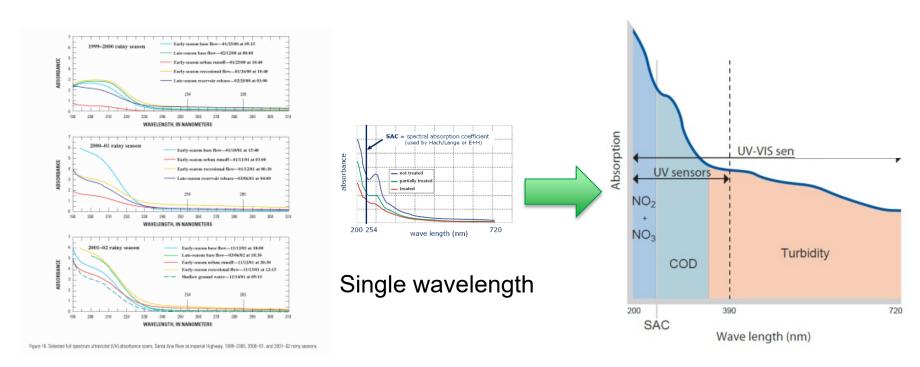


Double carbon band structure has strong light absorbance in UV spectra, especially at 254nm, concentration can be calculated with Lambert-Beer law

$$\mathbf{E}_{\lambda} = \mathbf{\varepsilon}_{\lambda} \cdot \mathbf{c} \cdot \mathbf{d}$$

E = absorbance

 $\varepsilon$  = molar extinction coefficient


d = path length in cm

c = molar concentration





# Multi Wavelength vs Single Wavelength



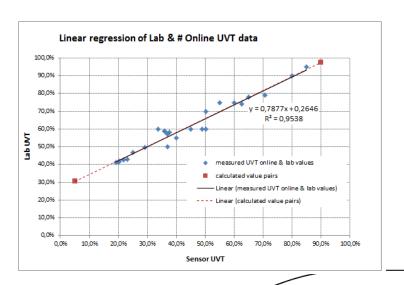
(John A. Izbicki 2004)

Multiple wavelength scan

Spectra: more information, more reliable data



#### **User Calibration**


- Enter # Sensor and lab data into the Excel Template
- Linear regression is performed automatically and corrected sensor values are displayed

| date and time    | # sensor value mg/L | Lab value mg/L | corrected sensor data<br>calculated with slope and asymetrie of<br>linear regression<br>mg/L |
|------------------|---------------------|----------------|----------------------------------------------------------------------------------------------|
| 27.06.2016 09:00 | 70,8                | 79,0           | 81,8                                                                                         |
| 28.06.2016 09:15 | -5,4                | 23,0           | 22,8                                                                                         |
| 29.06.2016 09:30 | 37,6                | 58,0           | 56,1                                                                                         |
| 30.06.2016 09:45 | 10,2                | 32,0           | 34,9                                                                                         |
| 01.07.2016 10:00 | 50,3                | 71,0           | 65,9                                                                                         |
| 02.07.2016 10:15 | 62,7                | 74,0           | 75,5                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
|                  |                     |                | 26,9                                                                                         |
| min value        |                     | 23,0           |                                                                                              |
| max value        | 70,8                | 79,0           |                                                                                              |



#### WTW photometers

| value pair calculation for user calibration |    |                                                                                                   |  |  |  |  |
|---------------------------------------------|----|---------------------------------------------------------------------------------------------------|--|--|--|--|
| # sensor value<br>mg/L                      |    | calculated lab referenc value calculated<br>with slope and asymetrie of linear<br>regression mg/L |  |  |  |  |
| value pair 1                                | -5 | 23                                                                                                |  |  |  |  |
| value pair 2                                | 71 | 82                                                                                                |  |  |  |  |





### Sensors Types

#### 1 mm => high concentrations, 5 mm => lower concentrations

NO<sub>3</sub>, (**TSS**) NitraVis®:

1 or 5 mm (influent, aeration, effluent)

SAC, COD, BOD, DOC, TOC, UVT (TSS) CarboVis®:

1 or 5 mm (influent, effluent)

NO<sub>3</sub>, SAC, COD, BOD, DOC, TOC, UVT NiCaVis®:

(effluent) **5** mm



Show 5 parameters

NO<sub>2</sub>, NO<sub>3</sub> NitraVis®NI:

1 or 5 mm (influent, aeration, effluent)

NO<sub>2</sub>, NO<sub>3</sub>, SAC, COD, BOD, DOC, TOC, UVT NiCaVis® NI:

**1** or **5** mm (influent, aeration, effluent)

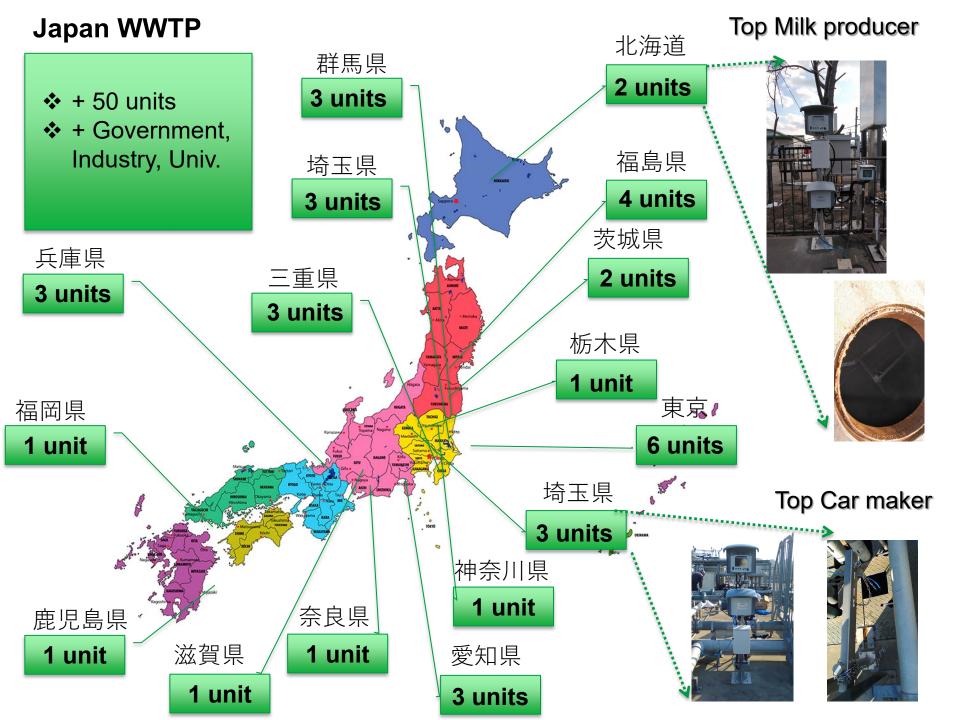


gap size of optical





**Poll Question #2** 


How are you currently measuring BOD/DOC in your applications?

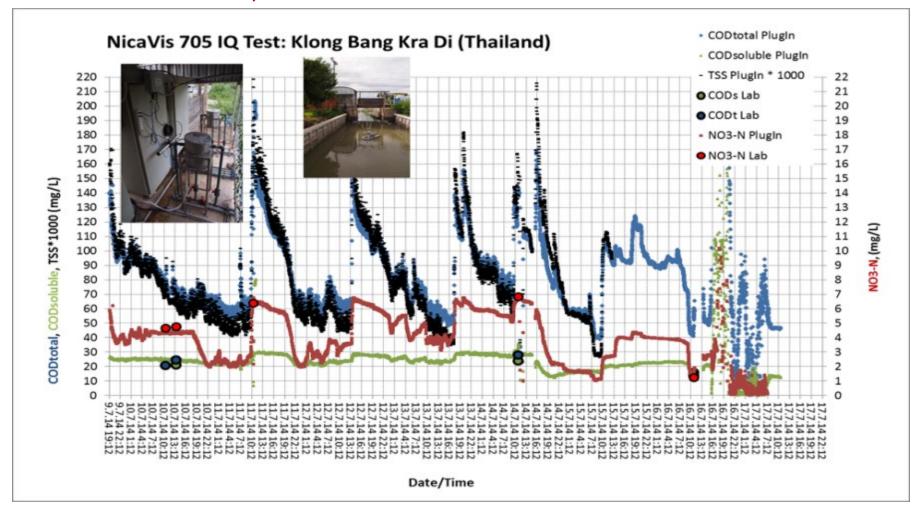


# Application Examples

Online Wastewater Monitoring of COD/BOD with Spectral Sensors



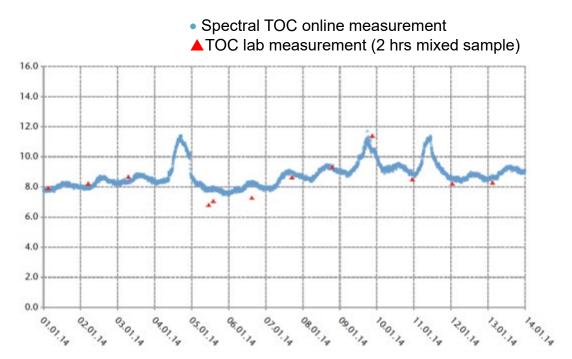



# Germany - WWTP Salzgitter Nord





## Thailand – Klong Bang Kra Di

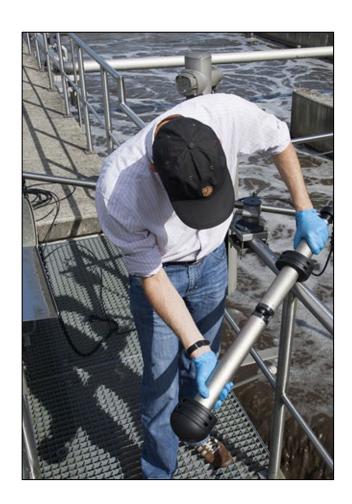

#### Model: WWTP effluent, COD soluble





# Germany – WWTP Neuruppin

**Effluent TOC Monitoring Model: WWTP effluent, COD soluble** 








## Summary

- UV-VIS sensor method is the main trends on COD/BOD monitoring.
- WTW Carbovis Sensor has been demonstrated a stable and reliable method on COD/BOD monitoring.







# Point and Non-Point Pollution Monitoring

UDIT KUMAR
PROCESS SALES MANAGER

