

Get Your Lab **Ready for HABs**

a **xylem** brand

Dr. Stephanie A. Smith

Product Segment Manager, Xylem Laboratory Solutions

- Over 20 years in technology development and management
- Dr. Smith's page
- @WaterWoman, <u>https://www.linkedin.com/in/ysiwaterwoman/</u>
- HAB HUB and HAB PAGE
- Missouri State University Biology (B.S., M.S.), The Ohio State University Microbiology (Ph.D.).

Acknowldedgments

- Tim Smith, FS3700 Automated Chemistry Analyzer Expert, OI Analytical
- Cynthia Elmore, GC Expert, OI Analytical
- Developed and Validated the methods we will talk about

Agenda

- HAB Monitoring
- The Methods
 - Total Phosphorus (TP) by USEPA Method 365.4
 - Total Kjeldahl Nitrogen (TKN) by USEPA Method 351.2
 - Purge and Trap with GC/MS, guided by USEPA Method 524.3 for volatile organics

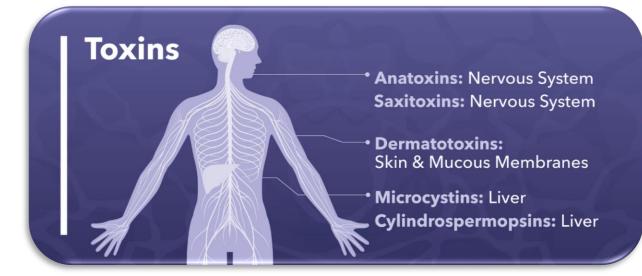
a **xylem** brand

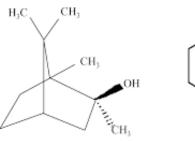
Eutrophication: 78% of US Coastlines 65% of Europe's Coastlines Globally?

https://www.frontiersin.org/articles/10.3389/fmars.2020.00670/full, Malone and Newton, Front. Mar. Sci. 2020_____

HAB Impacts

- Environmental Impacts
 - Reduced DO (hypoxia/anoxia)
 - Toxins and wildlife




HABs at YSI

HAB Impacts

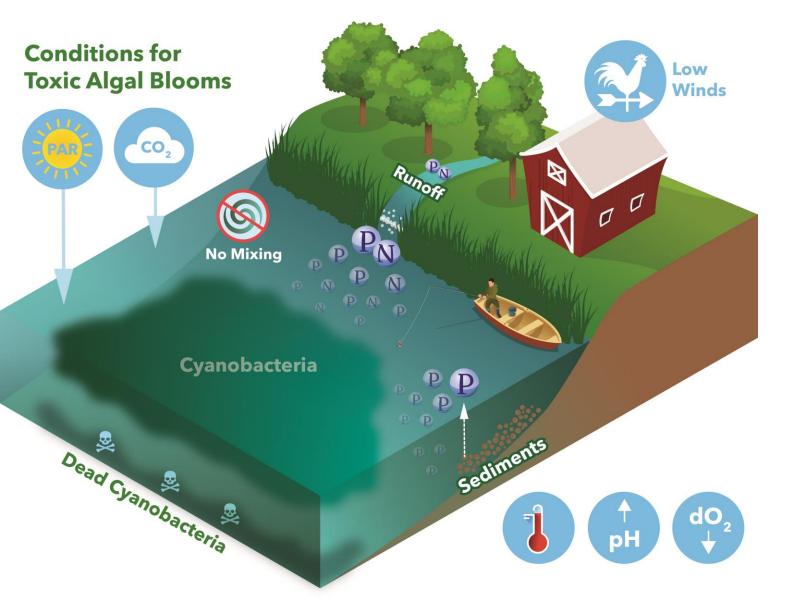
- Environmental Impacts
 - Reduced dissolved oxygen
 - Toxins
- Drinking Water
 - Toxins
 - Taste & Odor

OH

2 Methylisobornel (MIB)

Geosmin

HABs at YSI


HAB Impacts

- **Environmental Impacts** •
 - Reduced dissolved oxygen
 - Toxins
- **Drinking Water** ٠
 - Toxins lacksquare
 - Taste & Odor •
- Economic
 - Water treatment
 - Environmental cleanup
 - Recreational/Tourism impacts \bullet

YSI

Water Quality & HABs

- Drivers

 - ↑ Temperature
 - ↓ Flow/mixing
- Responses

 - ↓DO

What Sondes *Can* Do

- Continuous data acquisition in the field
- High-precision measurements of DO, temp, pH
- Trending measurements of chlorophyll, phycocyanin, phycoerythrin, nitrate, turbidity, fDOM

Select Your HAB System

What Sondes *Can* Do

What Sondes Can't Do

- Algae Speciation
- Toxin measurements
- Phosphorus or orthophosphate
- High precision measurements of chlorophyll, phycocyanin, phycoerythrin, nitrate, turbidity, fDOM, geosmin and MIB



What Sondes *Can* Do

What Sondes *Can't* Do

Get Your Lab Ready For HABs

- Toxins (ELISA)
- Chlorophyll extractions
- Algae speciation (microscopy)
- Total Phosphorus
- Total Nitrogen (via TKN)
- Geosmin & MIB

What Sondes *Can* Do

What Sondes *Can't* Do

Get Your Lab Ready For HABs

OI Analytical Solutions: FS3700 Automated Chemistry Analyzer (ACA) for Nutrients

- High-throughput
- ML600 Autodilutor
 - High accuracy and precision
 - Redilutes overrange hits
 - Repeats followers

• Preconfigured "cartridges" with all of the reactants

FS3700 Brochure

What Sondes *Can* Do

What Sondes Can't Do

Key Lab Methods for HABs

OI Analytical Solutions: GC Autosampler with Purge & Trap

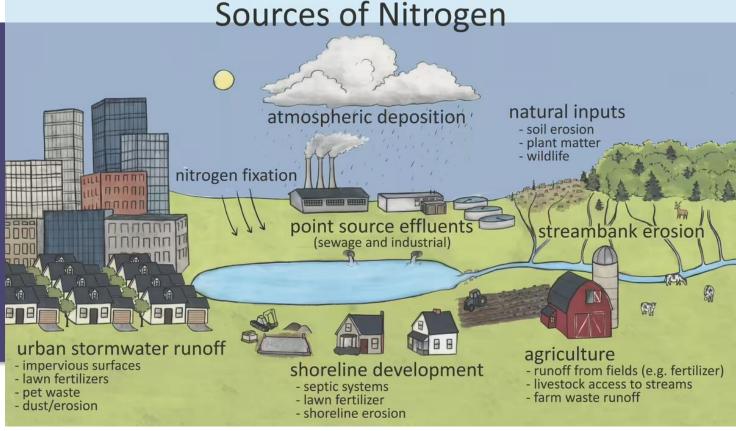
- 4100 Autosampler
- 4760 Eclipse Purge & Trap • #7 Trap
- Agilent 7890A/5975C GC/MS •

YSI

HAB Monitoring Summary

- The management and mitigation of HABs requires water quality monitoring
- The most important parameters to understand for HAB management are nutrient inputs
- One of the biggest challenges for drinking water reservoirs is management of taste and odor (geosmin and MIB)
- Nutrients and taste and odor compounds are best measured in the lab
 - In support or in place of field monitoring

Total Kjeldal Nitrogen EPA Method 351.2

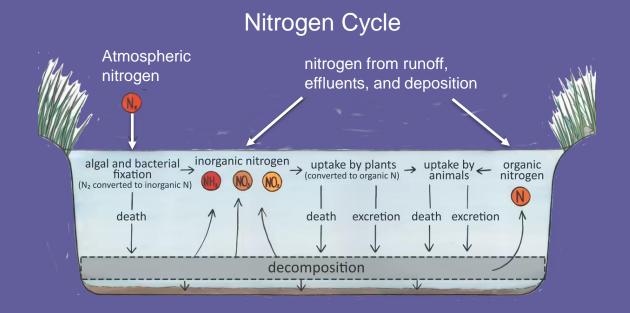

a xylem brand a

O·I·Analytical

a **xylem** brand

What Is TKN?

- TKN = organic nitrogen + ammonia + ammonium
- High concentrations indicate animaloriginating runoff
- TN = TKN + Nitrite + Nitrate


https://datastream.org/en/guide/phosphorus, June 2022

What Is TKN?

TKN Relevance For HABs

- Algae may be N₂ fixing, or non-N₂ fixing
- TKN represents highly assimilable N forms
- Ammonium may increase toxicity¹
- Ammonium and urea may lead to increased Microcystis biomass and toxin production²

What Is TKN?

TKN Relevance For HABs

Chemistry Of 351.2: Kjeldahl Digestion

$H_2SO_4 + Sample \rightarrow CO_2(g) + H_2O + (NH_4)_2SO_4(aq)$

Ammonium sulfate

CuSO₄ – catalyst to speed up the oxidation rate added to make digestion *K₂SO₄ - salt used to raise the temperature of the digestion*

What Is TKN?

TKN Relevance For HABs

Chemistry Of 351.2: Ammonium Gas Generation and Diffusion

$(NH_4)_2SO_4(aq) + 2NaOH \rightarrow Na_2SO_4 + H_2O + 2NH_3(g)$

$NH_3(g) + NaCIO \rightarrow NH_2CI + NaOH$

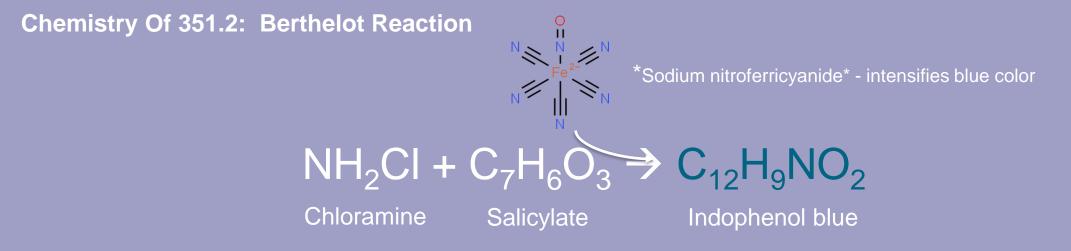
Sodium hypochlorite

What Is TKN?

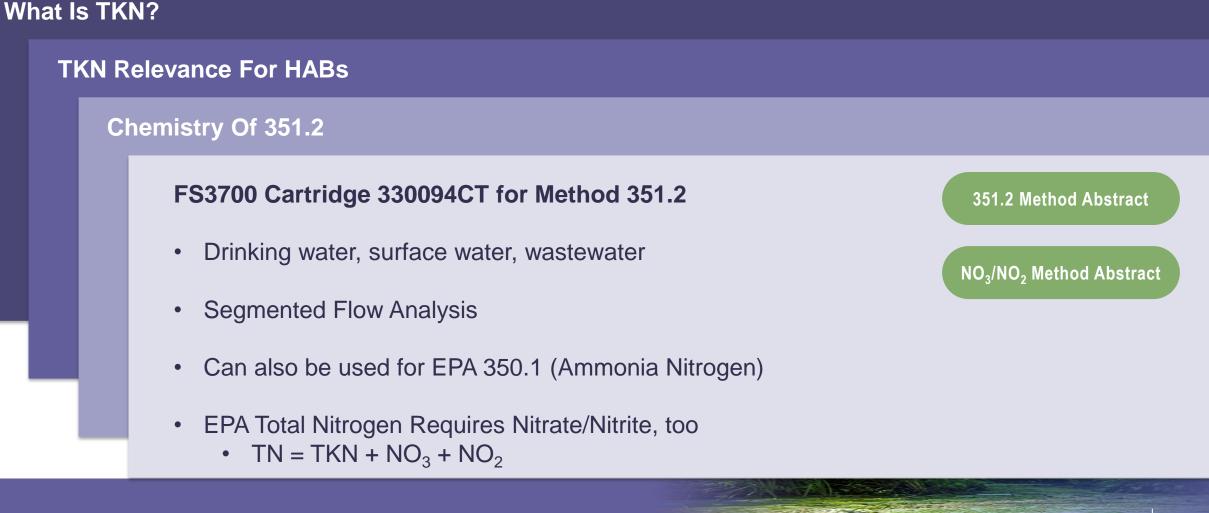
TKN Relevance For HABs

Chemistry Of 351.2: Berthelot Reaction

$NH_2CI + C_7H_6O_3 \rightarrow C_{12}H_9NO_2$

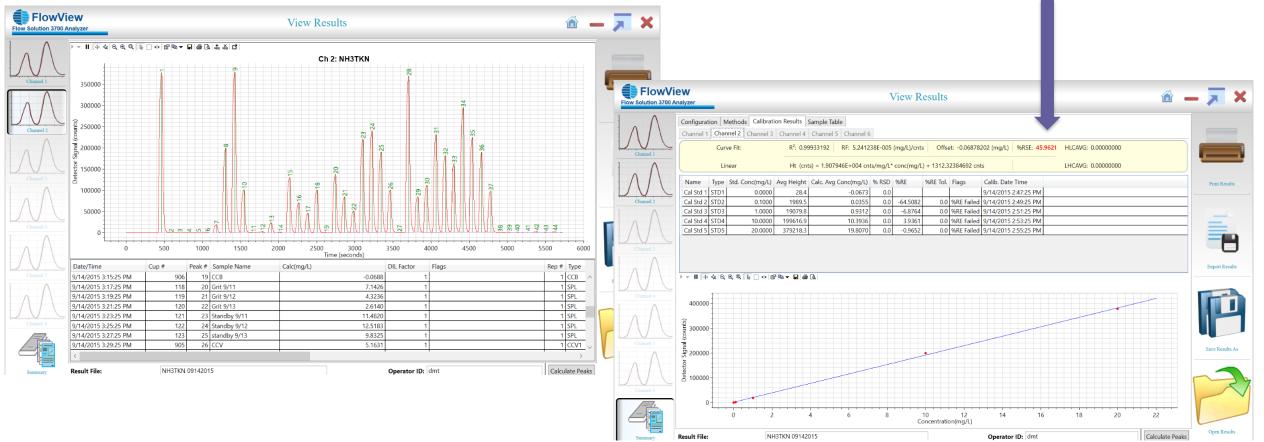

Chloramine

Salicylate Indophenol blue



What Is TKN?

TKN Relevance For HABs

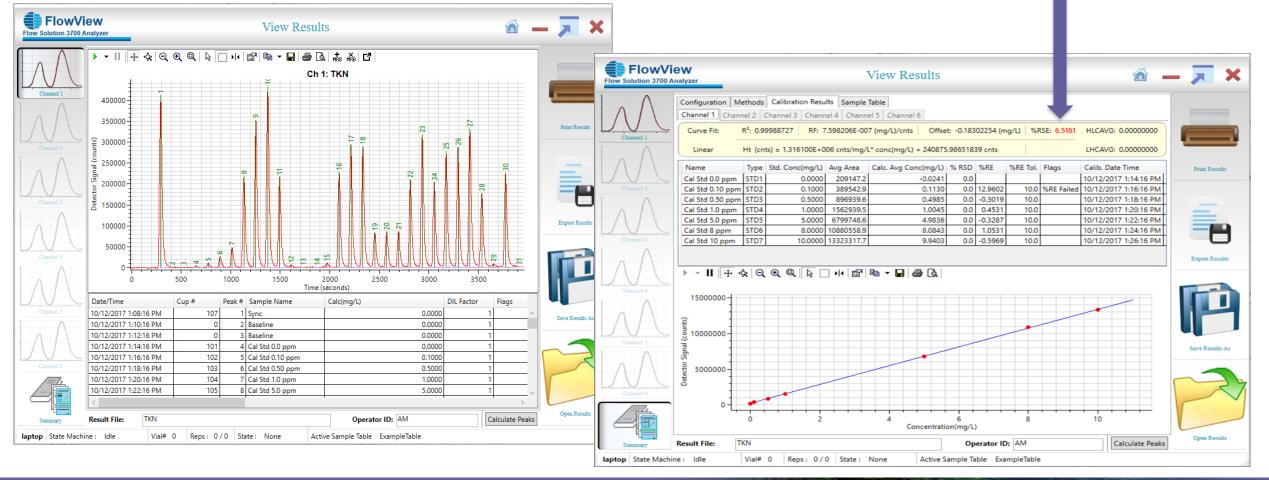


EPA Method 351.2 on the FS3700

WWTP Samples

Check peak markers, the software does the calcs

Calibration Using Ammonium Sulfate Check curve fit, %RSE with manual dilution*



EPA Method 351.2 on the FS3700

Calibration Using Ammonium Sulfate Check curve fit, %RSE

Calibration Using Ammonium Sulfate Check curve fit, %RSE with ML600 autodilutor

TKN Method Performance & Quality Control

Method Performance	
Range	0.010– 20 mg/L N
Rate	40 samples/hour
Precision	≤ 2 % RSD at mid-range
MDL	0.0012 mg/L P

- You can adjust your calibration range to your expected concentrations
- Published method has MDL, accuracy and precision study for reference

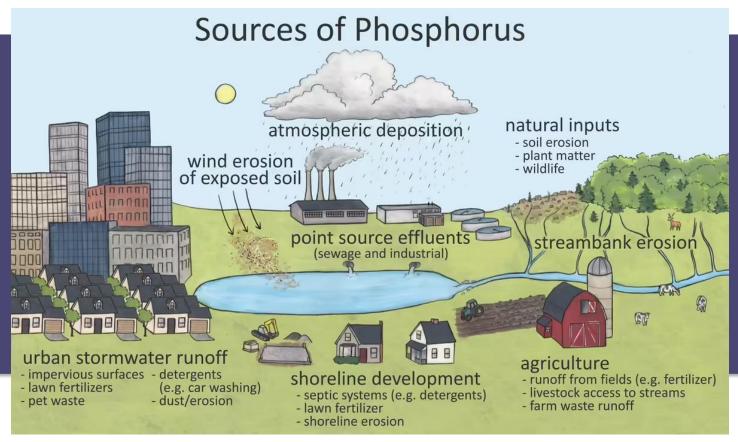
Sample Considerations

- Eliminate suspended particulates and ionic interferences by selectively diffusing ammonia through hydrophobic, microporous, polypropylene membrane.
- Filter turbid samples and digests prior to analysis.
- Heavy metals in the sample and digest matrices may interfere by precipitating.
 - Remove these interferences through complexation with sodium citrate.
- Occasional issues with residual chlorine.

Total Kjeldahl Nitrogen Summary

- TKN is a water quality parameter to aid in the management of eutrophication that leads to HABs
- TKN cannot be measured in the field—it requires a lab-based colorimetric method
- The FS3700 platform has pre-configured chemistry cartridges, autodilution, and methods to support TKN
- Paired with FS3700 nitrate and nitrate method, one can derive Total Nitrogen (TN)

Total Phosphorus EPA Method 365.4

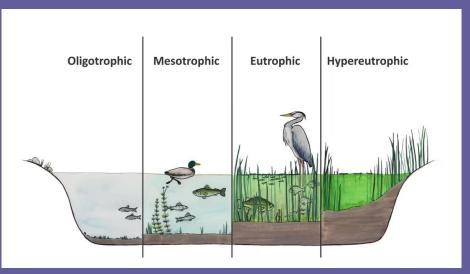

a xylem brand a

O·I·Analytical

a xylem brand

What Is TP?

- All particulate and soluble forms of phosphorus
- Multiple inorganic and organic types, but orthophosphate is considered the most biologically relevant


https://datastream.org/en/guide/phosphorus, June 2022

What Is TP?

How TP Affects HABs

- P is the limiting nutrient for algae in most freshwaters.
- Eutrophic and hypereutrophic conditions lead to HABs
- N:P ratio is an indicator of HAB risk in a system

https://datastream.org/en/guide/phosphorus, June 2022

What Is TP?

How TP Affects HABs

Chemistry Of 365.4 : Kjeldahl Digestion

$H_2SO_4 + Sample \rightarrow CO_2(g) + SO_2(g) + H_3PO_4$

Total P by SFA (365.4)

What Is TP?

How TP Affects HABs

Chemistry Of 365.4 : Orthophosphate Complex

$PO_4^{-3} + 12MOO_4^{+2} \rightarrow H_3PO_4(MOO_3)_{12} + 12H_2O$

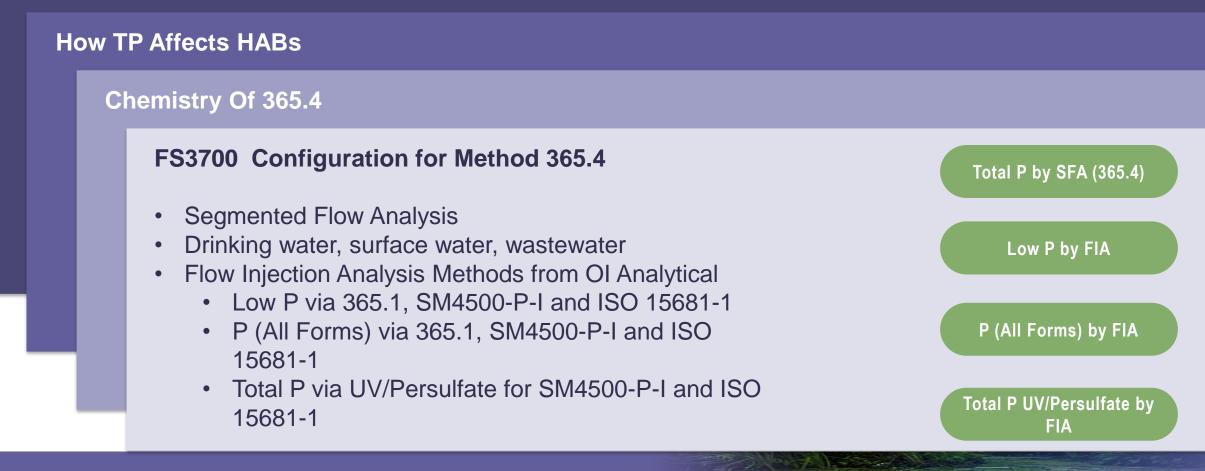
 * potassium antimony added to accelerate the color-forming reaction *

Total P by SFA (365.4)

What Is TP?

How TP Affects HABs

Chemistry Of 365.4 : Ascorbic acid reaction


$H_3PO_4(MoO_3)_{12} + Ascorbic \rightarrow$

 $H_7PO_4(Mo(V)O_3)_4(Mo(VI)O_3)_8$

Total P by SFA (365.4)

What Is TP?

36

EPA Method 365.4 on the FS3700

WWTP Samples Check peak markers, the software does the calcs

Calibration Using Ammonium Sulfate 10.8% RSE with manual dilution*

Sample Considerations

- Filter turbid samples
- Samples with background absorbance
- Residual reacted phosphate

Total P by SFA (365.4)

- Wash the system and glassware with 0.1-1 N HCl
- Other compatible procedures for removing or suppressing interferences
- Take care to keep all such items free of contaminants.

Total Phos Method Performance & Quality Control

Method Performance			
Range	0.010 – 20 mg/L P		
Rate	60 samples/hour		
Precision	≤ 2 % RSD at mid-range		
MDL	0.0012 mg/L P		

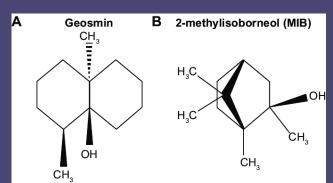
- You can adjust your calibration range to your expected concentrations
- Published method has MDL, accuracy and precision study for reference

Total P by SFA (365.4)

Total Phosphorus Summary

- TP is a water quality parameter to aid in the management of eutrophication that leads to HABs
- The most accurate TP measurements are made in the lab
- The FS3700 platform has pre-configured chemistry cartridges, autodilution, and methods to support TP

Geosmin & MIB EPA Method 524.3


a xylem brand

Why EPA 524.3?

What are Geosmin & MIB?

- Earthy/musty taste and odor
 - Humans can detect as low as 5 ppt!
- Made by microorganisms, especially in soils
- Volatile organic compounds (VOCs)
- Non-toxic

What are Geosmin & MIB?

HABs and Geosmin/MIB

- Made by some blue-green algae (but not all and not all the time)
- May be an "early warning sign" of an HAB
- Co-occurred with toxins \geq 90% of the time in one study*
- Can be removed via Advanced Oxidation Processes (AOP), Carbon, etc.

AOP Article in WWD

*Graham JL, et al. Environ Sci Technol. 2010;44(19):7361–7368. doi: 10.1021/es1008938.

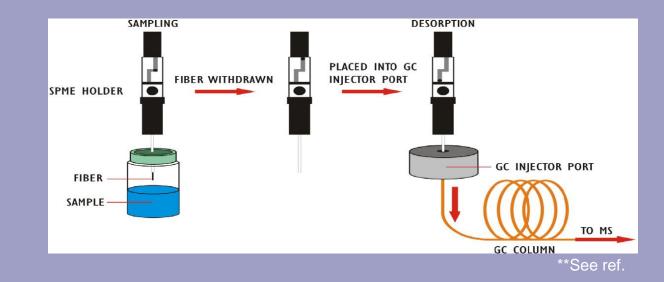
What are Geosmin & MIB?

HABs and Geosmin/MIB

Geosmin/MIB Methods*

- \leq 1 ppt in finished water is the target
- GC/MS with selective ion monitoring (SIM)
 - Sample concentration is necessary

*Bristow, R.L., et al. TrAC. 2019;110:233-248 https://doi.org/10.1016/j.trac.2018.10.032.



What are Geosmin & MIB?

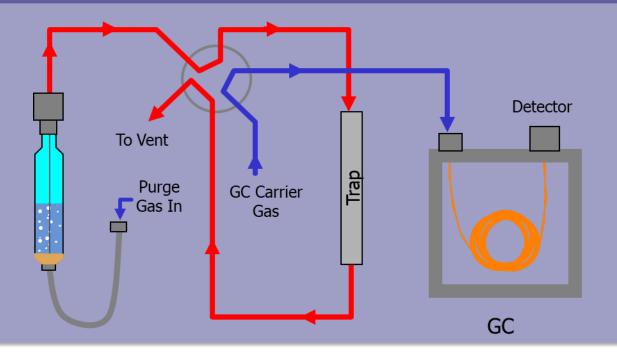
HABs and Geosmin/MIB

Geosmin/MIB Methods*

- \leq 1 ppt in finished water is the target
- GC/MS with selective ion monitoring (SIM)
 - Sample concentration is necessary
 - Solid phase microextraction (SPME)

*Bristow, R.L., et al. TrAC. 2019;110:233-248 https://doi.org/10.1016/j.trac.2018.10.032.

**Schmidt and Podmore.. J. Mol. Biomark. Diagn. 2015;6(6). <u>http://dx/doi.org/</u>10.4172/2155-9929.1000253.



What are Geosmin & MIB?

HABs and Geosmin/MIB

Geosmin/MIB Methods*

- \leq 1 ppt in finished water is the target
- GC/MS with selective ion monitoring (SIM)
 - Sample concentration is necessary
 - Solid phase microextraction (SPME)
 - Purge & Trap (PT)
 - Extraction, concentration, sample intro all in one step

*Bristow, R.L., et al. TrAC. 2019;110:233-248 https://doi.org/10.1016/j.trac.2018.10.032.

What are Geosmin & MIB?

HABs and Geosmin/MIB

Measuring Geosmin/MIB

OI Analytical Method via EPA 524.3

- 4100 Autosampler
- 4760 Eclipse Purge & Trap
 #7 Trap
- Agilent 7890A/5975C GC/MS

What are Geosmin & MIB?

HABs and Geosmin/MIB

Measuring Geosmin/MIB

OI Analytical Method via EPA 524.3: Method Goals

- High sensitivity, hi reproducibility, using a validated method that labs are already familiar with
- No sample salting
- Lower volume (10 mL vs. 25 mL in some methods)
- Lower temp purge (60 C vs. 80 C)

Geosmin & MIB via EPA 524.3: Calibration Acceptance & Validation

Compound	1 p	opt	100 ppt		
Compound	Std	%Rec	Std	%Rec	
1,2-DCB-d4 (SS)	9.81	98.1	10.16	102	
2-MIB	1.03	103	97.2	97.2	
Geosmin	1.13	113	98.7	98.7	

- 1,2-Dichlorobenzene-d4 is the surrogate standard, at 10 ppt
- Concentrations: 1, 2, 5, 10, 25, 50, 75 and 100 ppt
- Low level %Rec must be +/- 50%, all other levels must be +/- 30%

Geosmin & MIB via EPA 524.3: Minimum Reporting Level (MRL)

Compound	Mean	Std. Dev.	HR _{PIR}	Upper PIR Limit (%)	Lower PIR Limit (%)
1,2-DCB-d4 (SS)	9.69	0.137	0.54	102	91.5
2-MIB	1.13	0.060	0.24	137	89.8
Geosmin	1.05	0.061	0.24	129	80.9

- HR Half Range Prediction of Interval Results
- Upper PIR limit must be ≤150% recovery (true value is 1 ppt)
- Lower PIR Limit must be ≥50% recovery (true value is 1 ppt)

Geosmin & MIB via EPA 524.3: Initial Demonstration of Capability

Compound	Precision (%RSD)	Accuracy (%)
1,2-DCB-d4 (SS)	1.92	98.4
2-MIB	3.73	109
Geosmin	3.46	106

- The 1,2-DCB-d4 surrogate standard was at 10 ppt
- Target compounds at 25 ppt
- %RSD must be ≤ 20% for precision for all
- Accuracy (%) must be ±20%
 - (80-120% recovery)

Geosmin & MIB via EPA 524.3: Considerations

- Method 524.3 is for finished drinking water
 - Haven't tested this method with source water
- Clean sample pathway, clean MS source
- Recommend minimum of three vials for sample testing
- Use same care you would use for all VOC sample collection

Geosmin & MIB Summary

- Taste and odor in drinking water are among the most insidious problems caused by HABs
- Ideal method should have
 - \leq 1 ppt detection limit
 - No pre-treatment of samples
 - Minimal reconfiguration of instruments
- This method for the 4760 Purge & Trap achieves ≤ 1 ppt MRL, employing EPA 524.3 and a common setup found in many environmental labs

Get Your Lab Ready For HABs!

